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Abstract
We present a comprehensive theory explaining interaction between two soli-
tons from distant frequency channels in an optical fiber. The interaction may
be viewed as an inelastic collision, in which energy is lost to continuous radia-
tion due to non-zero third order dispersion. We derive a perturbation theory
with two small parameters: the third order dispersion coefficient ds, and the
reciprocal of the inter-channel frequency difference 1/€. In the leading order
the amplitude of the emitted radiation and the soliton’s position shift are both
proportional to d3/|€2|. The accumulated effect of many collisions is a coherent

frequency shift, proportional to ds.
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Modern high speed optical fiber communication systems extensively use multi-frequency
channel technology (wavelength division multiplexing - WDM, see e.g.}). One of the major
limitations on the performance of WDM systems is caused by the nonlinear interaction of
data signals from different channels. We investigate this phenomena using conventional
optical solitons as an example of information carriers. In an ideal case soliton bit-patterns
from different channels would not experience any distortion due to the elastic character of
the soliton-soliton interaction. The effect of higher order dispersion breaks the ideal picture.
In this inelastic case collisions between solitons from different frequency channels lead to
emission of radiation, which is accompanied by shift in soliton position (soliton walk off
from the assigned time slot), corruption of the soliton shape and other undesirable effects.
Moreover, the radiation emitted due to collisions might, in its turn, lead to intra-channel
interaction between solitons from the same frequency channel. Therefore, it is important
to have a realistic estimation for the intensity of the radiation emitted, as well as for the
change in the soliton parameters due to the inter-channel interaction.

In this letter we calculate the spectrum and intensity of the radiation emitted in the
result of collision between solitons from different channels taking into account the effect
of third order dispersion. (See Figure 1 for cartoon of the collision process.) We also
calculate the change, induced by the collision, in the soliton parameters. To achieve the
goal a (double) perturbation theory with respect to two small parameters is developed: the
dimensionless third order dispersion coefficient d; and the reciprocal of the dimensionless
inter-channel frequency difference 1/Q2. We find that the amplitude of the emitted radiation
and the change in soliton positions are proportional to d3/|2| and do not depend on the
sign of ). The amplitude and the phase velocity do not change in the leading order of the

perturbation theory. Accumulation in the soliton position shift due to many collisions leads



to the frequency shift, o ds.
Propagation of short wave packets through an optical fiber is described by the following

modification of the nonlinear Schrodinger equation (see Ref.?, p. 44)

10,V + 07V + 2|U|?¥ = id30} U, (1)

where z is the position along the fiber and ¢ is the retarded time associated with the reference
channel. Coefficients in front of the second-order dispersion term and the nonlinear Kerr
term are re-scaled to unity and to the factor of two in Eq.(1) by a proper choice of time-
and W- units respectively®. Term which appears on the rhs of Eq.(1) accounts for the effect
of third order dispersion (linear dependence of fiber chromatic dispersion on the wavelength
of carrier frequency), with ds being a constant. Higher order terms (with higher temporal
derivatives, and also accounting for other than given by the Kerr term types of nonlinearity)
can be neglected in the majority of practical cases. Notice also that fiber losses in Eq.
(1) are omitted. Eq.(1) applies to description of the inter-channel interaction of optical
pulses in three different cases: (i) dispersion length, length of nonlinearity and characteristic
distance of soliton interaction are much smaller than characteristic length of fiber losses?;
(ii) fiber losses are compensated by in-line distributed optical amplifiers; and (iii) these
losses are compensated by lumped optical amplifiers achieved by insertion of fiber spans
with exponentially decreasing spatial dispersion profile® (dispersion tapered fibers).

It is important to mention that Eq.(1) is generic, as it explains simultaneous propagation
through many frequency channels. Unlike in the degenerate case of d3 = 0, Eq.(1) is not
integrable. However, in many practical examples d3 < 1, thus a perturbative calculation
about the integrable d; = 0 limit is proper.

Single soliton solution of Eq.(1) with d3 = 0 in a given frequency channel, characterized



by a frequency shift {2 relative to a reference channel, is given by

explia + 1Q(t — y) + i(n? — Q?)z]

cosh[n(t —y — 2Q2)] ’ @)

where «, 7 and y stand for the soliton phase, amplitude and position, respectively. Assuming

that d3 < 1, we will be looking for perturbative solution of Eq. (1) in the form
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where 7q = t — yq — 2Q(1 + 3dsQ/2)z, 7o = (1 + 3dsQ) ™29, and xq = aq + Q(t —
ya) + [7E — Q2(1 + d3)] z. The first term on the rhs of Eq. (3) is the ideal single soliton
solution, which accounts for the shift in the second order dispersion ~ d3Q. (The shift is
not necessarily small. The only limitation on d3(2 is d3Q2 > —1/3, which is the condition for
the existence of a soliton solution in Eq. (1).) The second term in Eq. (3) is perturbative,
O(ds). To calculate the term we adopt perturbation method introduced by Kaup in’. In
Kaup’s theory, a differential operator f/n is used to describe a linear perturbation around
the ideal soliton solution. The complete system of eigen-functions of f’n includes continuous
spectrum of delocalized modes, as well as four discrete localized modes, related to small
changes in the four parameters of the soliton: €, «, n and y. We expand gqn in terms
of the eigen-functions of IA,,] and calculate the coefficients of this expansion. Although the
expansion contains contributions from both localized and unlocalized modes, the complete
contribution is localized.( Explicit expression for gq can be found in®.)

Let us now describe collision between two solitons from different channels. For simplicity,
and without any loss of generality, we choose one of the channels to be the reference one
with © = 0. One also assumes that for the second channel €2 is much larger than inverse
width of the pulse (i.e. © > 1 in the dimensionless units used in Eq.(3)). We are looking

for a two-soliton solution of Eq.(1) in the form Uy, = ¥ + ¥q + &, where ¥y and g
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are single-soliton solutions of Eq. (1) in channels 0 and , respectively, and ® is a small
correction due to collision. (It is straightforward to check that the exact two-soliton solution
of Eq.(1) at d3 = 0 turns into ¥, + Uy in the leading, i.e. accounting for O(1/Q) terms,
order.) One substitutes W, into Eq.(1) and calculates the correction ®, to the soliton in
the reference channel. Calculation of the correction ®q to the soliton in the €2 channel is
similar. Since ®q oscillates together with ¥y, and 2 > 1, one neglects the exponentially
small contributions from the terms rapidly oscillating with z. Then, the equation describing
®y is
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where ®; = &g exp(—ixo) and ¥y = Ugexp(—ixg). Vicinity (in z) of the collision event,
(20 — 2/, 20 + 2/Q)], where Q > Z > 1, is naturally separated from the regions before and
after collision. In the collision region ®, acquires a fast change with respect to z. Since
for this region Az ~ 1/Q, the 8, and |Ug|2T, terms give leading contributions to Eq.
(4), while the L, term in Eq.(4) can be neglected. After collision, i.e. at z > z + 2/,
interaction between the two solitons becomes exponentially small, so that the term |‘IIQ|2\I~IO
can be neglected. Formally, separation of scales means that one can replace the rhs of Eq.(4)
by C0(z—zp), where 0(z) is the Dirac-delta function and the constant C' is simply the integral
of the rhs of Eq.(4) over z. It results in a well-formulated Cauchi problem for ®;, which is
solved by projecting the source term (integral of the rhs of Eq.(4)) and &, into the series
with respect to the eigen function of f,n. Coefficients of the expansion for @, correspond
to soliton parameters and intensity of the emitted radiation. The resulting equations for

the expansion coefficients are first order ordinary differential equations with source terms

being convolutions of the integral of the rhs of Eq.(4) with respective eigen-functions of IAJ,,.
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(See Ref.? for complete table of integrals entering the problem.) The resulting ®,, found in
the form of expansion over the eigen-functions of L,, contains O(1/Q) and O(ds/Q) terms.
(It is straightforward to check that there are no O(ds) terms in ®;.) Moreover, one finds
that the only effect in the O(1/€2) order of the theory is seen in the change of the soliton
phase, described by Aag =~ 4o (1 + 3d3Q)Y/?[(1 + 3d3Q/2)|Q2[]~L. To calculate the radiation
contribution and also change in other soliton parameters (e.g. soliton position) one turns to
account for the next O(d3/f2) order of the theory.

One finds that the amplitude of radiation emitted by a soliton from the reference channel

is proportional to ds/|€2|. The total radiation energy &y, emitted by this soliton, is

mang (1 + 3dsQ)d3

& = 016967 5 o e

The soliton amplitude and phase velocity do not change in this order of the theory. (This
later statement is consistent with the conservation law for the total energy, which requires
o =1+ O(d3/Q?%). See also® for an example of similar situation.) The collision also leads

to a change in the position of the soliton, which is given by

’I]Q(l + 3d39)1/2d3
(1+3d:2/2)Q]
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Notice that the frequency difference €2, enters the expressions for the position shift and the
phase shift dependent on its absolute value only, ~ 1/|Q2|. This is consistent with the fact
that Eq. (1) is not invariant under the transformation z — —z. The observation is especially
important for the position shift, since it means that the shift will always be in the same
direction, regardless of the (2 sign. Therefore, soliton in the reference channel acquires a

frequency shift in the result of many collisions

25|Q(1 + 3dsQ/2) Ay

AQy ~
0 T

= O(d3)7
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where 7' is the width of the time slot allocated for the solitons in channel 2 and s is the
parameter describing the average fraction of occupied time slots, 0 < s < 1. The fact that
radiation amplitude and soliton position acquire shifts in the mixed, second order (with
respect to d3 and 1/Q) can be explained in the following manner. For ideal solitons (i.e.
for solitons unperturbed by ds) the only effect of the collision is seen through a phase
shift. Therefore, it is natural to expect that account for collision between non ideal solitons,
perturbed by ds3, will be proportional to the product of the soliton shape distortion, estimated
by O(ds), and the duration (in z) of the collision event, estimated by O(1/9Q). Hence, the
combined effect is ~ d3/€2, indeed.

Let us use our results to make some predictions for an optical fiber setup with dis-
tributed amplification compensating losses or with lumped amplification and dispersion
tapered fibers. Taking 7y = 1 and requiring that widths of the two solitons would be equal
(bit-rates should be the same in all channels) one obtains 7g = (1 4+ 3d3€)'/2. Then, for the
values specified in® one derives, £ ~ 1.33274 x 107?, for the fraction of the total radiation
emitted by the soliton in the reference channel, and Ay, = —0.0271 for the soliton position
shift, measured in units of the soliton width. For s = 0.5 and 7" = 5, AQy = —0.1084,
corresponding to he dimensional frequency shift of —6.83 x 10'°Hz.

Even though the effect of a single collision is relatively small, the accumulated effect
of multiple collisions of a soliton from the 2 = 0-channel with many solitons from other
frequency channels can be significant. We have already discussed one of the possible ac-
cumulative effects: the effect of the soliton (channel) frequency shift, which appears as a
result of multiple shifts of the soliton position. One also finds that the total energy emit-
ted by a soliton grows linearly with the number of collisions. Thus, for the parameters

explained in Ref.?, the average distance passed by the reference channel soliton until it ex-



periences 10* collisions (that is the number correspondent to a noticeable loss of its energy:
10* x & =~ 107!) is ~ 1000km. Notice also, that the radiation emitted in the result of
multiple collisions can also lead to undesirable radiation-mediated interaction of the given
soliton with other solitons in the same frequency channel.

We conclude by pointing out that this study opens new vistas for testing variety of
inter-channel interaction phenomena. For example, the effect of four-wave mixing resulting
from soliton collisions in case of three or more equally separated channels, can also be
addressed. Inter-channel pulse interaction caused by Raman scattering is another example
of phenomenon, interesting and significant to study.
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Fig. 1. Schematic description of the collision between two solitons from different frequency

channels.

10



soliton 1 soliton 2

Before collision

€< _—>
radiation 2 radiation 1
soliton 2 soliton 1

After collision

Fig. 1. Schematic description of the collision between two solitons from different frequency

channels.
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